

HDU-CT9

Seat No.

M. Sc. (Sem. III) (CBCS) Examination

November / December - 2017 Physics: CT-09

(Nuclear & Particle Physics)

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) Attempt all questions.

- (2) All questions carry equal marks.
- 1 Answer in brief any seven:

14

- (1) Define: Unified mass unit.
- (2) Define: Average binding energy of a nuclear particle.
- (3) Calculate the Coulomb energy constant in MeV (e = 4.8×10^{-10} esu, $R_0 = 1.2$ fm)
- (4) Write the condition for spontaneous emission of β^- decay.
- (5) The decay constant of a β source is 0.001 sec⁻¹. Find its half life time.
- (6) List the fissile nuclides.
- (7) Complete the following decay mode. ${}_{2}\mathrm{He^{6}} \rightarrow {}_{3}\mathrm{Li^{6}} + \dots + \overline{v}$.
- (8) What do you mean by transfer nuclear reaction? Give one example.
- (9) What do you mean by fermions and bosons?
- (10) Why the process $p \rightarrow e^+ + \gamma$ has never been observed to occur?
- 2 Answer the following questions: (any two out of three) 14
 - (1) Make a list of basic nuclear properties. Discuss time dependent nuclear properties in detail.
 - (2) Discuss the isotopes, isobars and isotones with at least two examples of each.
 - (3) What is nuclear binding energy? Define it. Calculate the total and average binding energy of 12 C nuclide [M_H = 1.007825 u, M_n = 1.008665 u, M(12 C) = 12.000000 u].

3	Answer the following questions: (all are compulsory)		14
	(a)	Write the essential assumptions of a liquid drop model. Derive the Von-Weizsacker's semi-empirical mass formula.	
	(b)	Discuss the spin-orbit coupling model in detail. Find the nuclear spin and parity for the following nuclides. ¹ H, ¹¹ C, ¹² C, ⁴ He.	
		OR	
3	Answer the following questions: (all are compulsory)		14
	(a)	Discuss a nuclear reaction in lab system with necessary figure and derive nuclear reaction Q equation. Mention its special case.	
	(b)	Discuss in detail: Elementary particle quantum numbers.	
4	Answer the following questions: (any two out of three)		14
	(1)	Discuss neutrino hypothesis.	
	(2)	Derive the conditions for spontaneous emission of $\boldsymbol{\beta}^-$	
		and β^+ decay.	
	(3)	Discuss Compton Effect, when gamma radiations interact with matter.	
5	Write any two short notes:		14
	(1)	Fermi's theory of β decay.	
	(2)	Critical energy for nuclear fission.	
	(3)	Internal conversion process.	
	(4)	Symmetry and conservation laws.	